最新新闻
我要投稿
联系电话:027-87592219/20/21转188
投稿邮箱:tb@e-works.net.cn
您所在的位置:首页 > 智库 > 智能服务

数据挖掘技术在精准营销中的应用模式

发布时间:2016-05-26 作者:佚名  来源:36大数据
关键字:精准营销 数据 
精准营销就是在精准定位的基础上,依托现代信息技术手段建立个性化的顾客沟通服务体系。

    精准营销就是在精准定位的基础上,依托现代信息技术手段建立个性化的顾客沟通服务体系,实现企业可度量的低成本扩张之路,是有态度的网络营销理念中的核心观点之一。

  精准营销需要解决的问题是:哪些用户是某个产品或者营销活动的目标用户?或者是每个用户最适合推荐什么产品?前者是找目标用户,后者是为用户推荐产品,两者是类似的。我们可以利用数据挖掘技术对顾客的购买行为和历史的规律进行分析和挖掘,从而定位目标用户群体,实现以顾客为中心的精准营销

  1、精准营销方法论

  以顾客行为数据为基础,结合数据挖掘技术和不同营销手段,建立精准营销流程,形成从数据分析、预测模型、模型营销应用以及后续监测和评估的闭环。

  如下图是精准营销方法论,将数据挖掘和营销活动有机的连接形成了营销闭环。

精准营销方法论

精准营销方法论

  2、精准营销中常见的数据挖掘算法

  数据挖掘是指从大量数据中通过算法搜索隐藏于其中信息的过程。在精准营销中我们常用的数据挖掘的算法有:聚类、分类、关联。

  1)聚类

  聚类是一种无监督的学习算法,也就是说聚类不需要”结果变量“,它可以通过对自变量的探索自动告诉你应该分成多少类。聚类的基本原理是根据样本自身的属性,用数学方法按照某种相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行聚类。

聚类过程

 

聚类过程

  聚类在精准营销中的应用

  某电商公司进口食品类目需要探索不同消费者群体特征,我们结合最近半年购买进口食品类目的顾客的购买品类、购物方式、购物时间等因素通过聚类进行分类,找出每类用户的特征。通过聚类我们分成了11组,可以看出每一组人群特征,从而针对不同的组实现精准营销。

3
本文来源于互联网,e-works本着传播知识、有益学习和研究的目的进行的转载,为网友免费提供,并以尽力标明作者与出处,如有著作权人或出版方提出异议,本站将立即删除。如果您对文章转载有任何疑问请告之我们,以便我们及时纠正。联系方式:editor@e-works.net.cn tel:027-87592219/20/21。