最新新闻
我要投稿
联系电话:027-87592219/20/21转188
投稿邮箱:tb@e-works.net.cn
您所在的位置:首页 > 视点

麦肯锡:中国人工智能的未来之路

发布时间:2017-03-31 作者:鲍达民 
关键字:人工智能 
2016年3月,AlphaGo计算机程序轻取围棋九段棋手李世石,立刻引发全世 界的讨论。这一里程碑事件向世界证明,机器可以像人类一样思考,甚至比人类做得更好。

 
    数据 
 
    正如人类需要从食物中获得能量,人工智能的“食物”则是稳定的数据流。人工智能系统必须通过大量的数据来“训练”自己,才能不断提升输出结果的质量。但数据领域的几个因素可能会影响中国人工智能的发展。首先,尽管中国的科技巨头能够通过其专有平台获得海量数据,但在创建一个标准统一、跨平台分享的数据友好型生态系统方面,中国仍落后于美国。其次,全球各国都已意识到开放政府数 据库有助于促进私营领域创新,但中国政府数据的开放度仍极为有限(见图4)。 最后,对跨境数据流通的限制也使得中国在全球合作中处于不利地位。 
 
    算法 
 
    就应用层面而言,中国的算法发展程度与其他国家并无太大差距。事实上, 中国在语音识别和定向广告的人工智能算法上取得了突破进展。而全球的开源平台也使得中国企业能够快速地复制其他地区开发的先进算法。 
 
    然而,中国的研究人员在基础算法研发领域仍远远落后于英美同行。一个主要原因就是人才短缺。美国半数以上的数据科学家拥有10年以上的工作经验,而在中国,超过40%的数据科学家工作经验尚不足5年。中国在人才方面的持续努力将至关重要。 
 
    目前,中国只有不到30所大学的研究实验室专注于人工智能,输出人才的数量远远无法满足人工智能企业的用人需求。此外,中国的人工智能科学家大多集中于计算机视觉和语音识别等领域,造成其他领域的人才相对匮乏。如果中国大学对学生提出更高的数学和统计学要求,并且集中资源发展该领域全球前沿研究,人工智能的发展必将受益匪浅。另一个值得思考的方向是改进现有的科研经费分配模式来推进创新。  
 
    计算能力 
 
    就人工智能的商业应用而言,计算能力并非当前掣肘。由于微处理器在全球市场上是非常普遍的产品,计算能力已经成为一种能够轻松购买得到的商品。 
 
    然而,中国绝不能忽视发展自己的先进半导体、微处理器和高性能计算技术的重要性。高运算速度的计算技术是发展尖端人工智能技术的重中之重,而其耗能水平则决定着人工智能解决方案能否实现大规模商业化。计算能力是人工智能的基 础设施之一,因此具有极高的战略意义。依赖进口意味着这一基础设施的坚固程度 仍不理想。 
 
    长期以来,中国的微晶片严重依赖进口,部分类型的高端半导体则几乎完全依靠进口。2015年,美国政府禁止了英特尔、英伟达和AMD这三家全球最大的芯片供应商向中国机构出售高端超级电脑芯片。这一禁令显示了中国在半导体方面的自主研发能力对于未来人工智能发展十分重要。 
 
    为应对这一局面,中国政府在2014年出台了《国家集成电路产业发展推进纲 要》以及中国制造2025行动纲领。中国政府还成立了国家集成电路产业投资基金,目前募资已超过 200亿美元。相关行动已初见成效:2016年6月神威太湖 之光超级计算机问世,成为世界上运算速度最快的超级计算机,使用的是中国自主知识产权的处理器。政府的前期投资可以产生显著的涟漪效应,鼓励私营企业的积极参与。 
 
    特种处理器,如可以处理大量复杂计算的GPU,对人工智能的发展格外重要。在中国大力发展其集成电路产业的过程中,也应密切关注此类处理器的发展。 
 
    总而言之,在探索发展人工智能的战略进程中,中国需要清楚地认识到,科技产业正在快速全球化。从基础研究到应用开发,再到硬件生产,人工智能全产业链的各个环节都包含着大量国际合作。在建设自己的数据生态系统、培养数据科学和研发人才,以及打造半导体产业的同时,中国还需要将其人工智能产业建设成为一个与全球市场融合的开放系统。  
 
    人工智能对经济的影响 
 
    随着中国老龄化日益严重,生产力的提升刻不容缓,人工智能正是加快生产力增长的重要机遇。然而,政策制定者还应考虑到它可能对劳动力市场产生的震荡。 
 
    在过去数十年,中国因‚人口红利受益良多,劳动力的扩张大大促进了经济增长。但老龄化正使中国逐渐失去这一推动力。中国的劳动年龄人口最早将在2024年达到峰值,并在之后的50年中减少五分之一。这一人口结构变化趋势意味着在当前生产力水平的基础上,中国将缺乏足够的劳动力以维持其经济增长。拉动经济增长唯一可行的方式就是大幅推动生产力增长。 
 
    人工智能有助于缩小这一差距。通过辅助或替代人类劳动,人工智能系统能够更有效率地完成现有工作,从而提升生产力。以英特尔为例,该公司在芯片生产过程中会收集大量数据。过去,如果生产中出现问题,公司需依靠人工分析数据寻找根本原因。而现在,机器学习以远胜人工的速度完成这项任务,其算法能够筛 选成千上万的数据点以找出残次芯片的共同特征。此外,人工智能还可以使工业 机械制造、供应链、物流以及其他生产流程更为高效。人工智能应用还能通过预 测故障、找出瓶颈,以及自动化流程和决策创造出巨大效益。 
 
    酒店和餐饮服务业、制造业以及农业在中国经济结构中占据了相当大的比重, 其中包含大量重复的、可自动化的工作内容。麦肯锡全球研究院预测,根据应用速度的不同,基于人工智能的自动化为中国带来的生产力提升每年可贡献0.8至1.4个百分点的经济增长。 
 
    除了提升生产力之外,人工智能技术的不断发展也将创造新的产品和服务,提供新的岗位和业务。就在几十年前,还没有人会想到互联网经济催生的新职业, 而人工智能也将带来相似的变革。 
 
    人工智能有大幅提升生产力增长的潜力,但代价可能是收入差距的进一步拉大。总而言之,人工智能将推动形成所谓的“技能偏好型科技变革”——即数字技能将特别受到重视,而对中低端技能劳动力的需求将缩小。比如,考虑到阿里巴巴已在其移动支付应用中启用了人工智能客服,由此可以设想今后客服等职位的需求将减少。劳动力总需求因而可能下降,尽管平均收入水平有希望上升,财富分配则将进一步向具备合适技能的人才聚拢。“数字鸿沟”有可能扩大社会分化。 
 
    总体而言,中国目前从事可自动化工作的劳动力人口超过其他国家。麦肯锡全球研究院预测中国51%的工作内容有自动化潜力,这将对相当于 3.94亿全职人力工时的冲击。  
 
    由重复性工作内容和可预测的程序性任务构成的职位尤其容易被人工智能取代。根据成本效益分析,中等技能工人将首当其冲,而低收入岗位则可能存在更长时间。但这并不意味着如今的高端工种能够完全免受冲击。比如,医生之类专业人士的部分工作也可能被自动化,而医生的工作内容将会更专注于与人的沟通和互动。许多职业并不会消失,但其工作内容将会发生改变,因此教育和培训体系也应与时俱进。一份美国政府报告预测了可能在未来盛行的四大类人工智能相关工作:使用人工智能系统完成复杂任务的协作性工作(如护士使用人工智能应用常规查房);开发人工智能科技和应用的研发性工作(如数据科学家和软件研发人员);监测、授权或修理人工智能系统的监测性工作(如人工智能机器人的修理师);适应人工智能时代的工作(如建立人工智能相关法律框架的律师或设计适合自动汽车行驶环境的城市规划师)。 

6