最新新闻
我要投稿
联系电话:027-87592219/20/21转188
投稿邮箱:tb@e-works.net.cn
您所在的位置:首页 > 智库 > 智能装备

基于UG NX6.0的整体叶轮的多轴加工数控技术

发布时间:2014-05-02 作者:UG 多轴加工 数控  来源:万方数据
关键字:UG 多轴加工 数控 
叶轮加工是当今多轴联动数控加工最常见的实例,也是数控加工的难点之一。本文从实际出发,使用UG/CAM 五坐标编程系统对整体式叶轮进行数控编程,采用插值方式对刀轴矢量进行匀化处理,采用SWARF方法对叶片进行精加工,同时合理控制进退刀,实现了整体叶轮叶片高质量无干涉的五坐标螺旋铣削加工刀位点轨迹生成。为复杂产品的造型和数控加工提供了设计思路和方法,也给其他类型叶轮的设计与加工提供了参考方案。

3 刀具的选择

  为提高加工效率,存进行流道开粗和流道半精加工过程中尽可能选用大直径球头铣刀。但是也要注意使刀具直径小于叶片间最小距离;在叶片精加工过过程中,应在保证不过切的前提下尽可能选择大直径球头刀,即保证刀具半径大于流道和叶片的交接部分的最大倒圆半径。在对流道和相邻叶片的交接部分进行清根时,选择的刀具半径小于流通和叶片相接部分的最小倒圆半径。

4 数控编程

  4.1 粗加工

  粗加工是以快速切除毛坯余量为目的,其考虑的重点是加工效率,要求大的进给量和尽可能大的切削深度,以便在较短的时间内切除尽可能多的余量。粗加工对表面质量的要求不高,因此,提高粗加工效率对曲面加工效率及降低加工成本具有重要意义。在UG加工状态下,“创建操作”对话框中。选择类型“MIL-CONTOUR”建立机床控制操作,再选择子类型“CAVITY-MILL”型腔铣。这是三轴联动的粗加工模式。选用直径为25R5的圆角铣刀加工,切削方式采用“跟随部件”,背吃刀量的0.6mm,刀具与刀具之间的步距为刀具直径的65%,部件侧面与底面留余量0.5mm。

整体粗加工路径

图2 整体粗加工路径 

  4.2 开槽与扩槽

  叶片扭曲且包角较大,刀具在通道内要合理摆动,使得刀具尽可能地接近叶片的两侧面而又不过切轮毂及轮盖。采用通常的刀轴驱动方法很难实现。刀轴插补(ToolAxis Interpolation)这一功能对于叶轮通道加丁非常有用,它通过在叶片与轮毂的交线上定义一系列的矢量以控制刀轴,轮毂面上其余刀具位置点的刀轴矢量由U、V 双向线性插值或样条插值获得。这样,刀轴能很好地按照加工的需要而得到控制。在不过切的情况下,最大限度地减少叶片面与轮毂之问的残留区。边界矢量的定义是一个十分细致的工作,其基本原则是避免刀轴的突变,保证刀轴平滑变化。

刀轴控制矢量
图3 刀轴控制矢量

  在创建操作对话框中,选择类 “mill_multi_zxis”多轴铣加工操作建立模饭。选择“VARIABLE_CONTOUR”子类型变轴铣.几何体选择整体叶轮。为了避免有过切现象,选择流道两侧的面为干涉检查面。选择驱动方式为“表面积”。刀轴选择“插补”,选用直径为20 mm 的球刀加工。选择多重深度切削,步进方式采用增量式,增量值为0.5mm。部件留余量为0.3mm。加工时需要考虑进刀退刀的问题,在非切削参数设置界面,选择“传递快速”区域之间下拉条中定义好逼近、离开、移刀运动的设置。其中“安全设置”设置为“球”半径选择250mm。用刀路变换命令加工其余流道曲面。

流道粗加工路径
图4 流道粗加工路径

本文为授权转载文章,任何人未经原授权方同意,不得复制、转载、摘编等任何方式进行使用,e-works不承担由此而产生的任何法律责任! 如有异议请及时告之,以便进行及时处理。联系方式:editor@e-works.net.cn tel:027-87592219/20/21。