在现场加工中,为了方便操作者形象、直观地浏览到刀具轨迹,使用CimcoEdit软件对其进行查看。打开程序文件并选择配置好的UCP800机床环境(其中包括机床几何结构和控制系统)。经过虚拟机床环境的仿真,可以直接使用叶轮的加工程序在UCP800五坐标机床上进行实际加工,免去了程序试切的环节。加工后的整体叶轮如图5所示。
5 结束语
实践表明,采用CAD/CAM技术,根据三坐标测量或者已有的数据,利用UG软件针对叶轮之类复杂零件的结构特点进行三维实体建模及多轴程序的编制,得到整体叶轮的模型以及整体叶轮的夹具设计。
整体叶轮的叶片曲面一直以来都是加工中的难点,通过此次的设计,经后置处理应用五坐标数控机床的程序代码,加工后的叶片的叶盆型面精度可达0.1mm,叶背面有0.5mm的加工余量由后续抛光工序完成。
通过构建虚拟仿真平台,借助虚拟仿真机床环境完成了本课题所涉及的曲率变化比较大的叶轮零件的加工程序的仿真、验证,同时做到了真实模拟、过程监控;降低,甚至避免了叶轮制造的废品,提高了表面质量及表面粗糙度水平;虚拟技术的应用降低了制造的风险,有效降低了生产成本,提高了效率。