最新新闻
我要投稿
联系电话:027-87592219/20/21转188
投稿邮箱:tb@e-works.net.cn
您所在的位置:首页 > 视点

如何利用物联网数据来构建工业智能

发布时间:2017-04-22
关键字:物联网 工业智能 
工业物联网的范围很大,包括数据传输、采集、通信以及平台的展示等。觉云目前做的是工业算法和模块。这处于工业物联网中游的位置,即拿到工业领域的流失数据后,再进行智能分析得出结果后在跟企业应用系统做集成。

    得益于物联网和工业4.0的兴起,最近几年,不少企业已经通过物联网的手段,建立起了数据采集,监控和展示的平台。对于数据的深层次应用,例如利用最新的机器学习算法,对数据进行智能化提升,则是目前工业用户进行数字化转型的必由之路。

    从现在的趋势来看,人工智能的热点领域都集中在语言、图像交互类, 或者商业应用类。对于工业领域,基于物联网获取的流式数据,如何通过人工智能来实现效率提升?在使用这些数据的过程中,如何避免踩坑,顺利进行方案的部署?这是工业界需要解决的问题。为此,本期硬创公开课,雷锋网邀请了觉云科技CEO常伟来为大家讲解如何用物联网数据来构建工业智能。

    嘉宾介绍

    1

    常伟先生是觉云科技的的创始人及CEO,在成立觉云科技前,他来自于微软上海,是物联网方案部门负责人,负责基于云端的物联网的服务组件设计和推广,包括了Azure的PaaS和SasS的服务在中国的落地,提供云端的数据接入,协议转换,服务分配,平台集成,分析和展示。主要客户包括上海观致,中国福特、中国通用等企业。

    以下内容整理自本期公开课,雷锋网做了不改变愿意的编辑:

    整个互联网到物联网走到现在是可以通过数据其解决一些问题的。

    在信息化时代,我们经历了从数据到信息到知识再到智能的过程,我们也相信在商业、工业领域都有大量的信息或者数据,而这些数据的价值就需要业界来挖掘,最后才会走到金字塔顶端智能所要解决的问题。

    大家常见的是交互类的智能,例如语音识别、图像识别等,毋庸置疑,这是现在很热门的一类课题,但今天讲的内容主要聚焦工业领域,怎么利用工业智能解决工业领域的问题。

    算法是基础

    2

    这张图片列举了常见的几种算法,分类、回归、推荐、异常点检测、聚类。分类主要是用来区分不同的群体,回归主要用来预测,例如预测一台设备什么时候发生故障;推荐主要解决的是,用户买了商品A之后,可以推荐商品B或者C;异常点检测主要针对没有历史记录如何在一个矢量集来找出异常点。

    现在这些算法都已经存在,我们的任务主要是利用这些算法来应用到商业应用或者工业应用当中。

    工业物联网的范围很大,包括数据传输、采集、通信以及平台的展示等。觉云目前做的是工业算法和模块。这处于工业物联网中游的位置,即拿到工业领域的流失数据后,再进行智能分析得出结果后在跟企业应用系统做集成。

    3

    工业智能怎么做?

    在工业智能里面,一般使用的数据是流式数据,采集的数据大部分来自设备端的数据,例如,泵、变速箱和机床这些和设备相关的变量。

    4

    在采集完数据后,可以通过算法模型进行建模评估,评估完之后就可以给客户提供预测性维护、能效管理以及质量管理等。

    针对不同业务领域提供算法模型,这些算法模型还会推送出一些结果。最后还会有不同的部署方式。有两种,一种是结果会嵌入到现有的设备管理系统平台,第二种是会构建SaaS服务平台,例如机床诊断模块。

    大数据分析项目的基本流程

    工业大数据分析是最近一两年有了工业物联网后才兴起的。目前觉云是基于既有经验,已经有行业的know how,可以在8周的时间里进行部署。

    5

    在这期间,主要做两大工作:第一阶段是数据的准备,包括数据导入、数据清洗和基本的可视化;第二部分是数据建模,包括特征和算法的选择、模型测试和评估。这两大工作后面会结合实际案例作分析。

    在这两部分工作做完后,就是数据运营了。上述模型通过可视化之后会部署到现有的平台或者是SaaS服务云。在这部分,需要有日常的运营工作,例如应用端的部署、分值计量和衡量指标,到最后还会反馈到第一个阶段,算法不是一成不变的,随着数据的积累、故障调优,会重新反馈到第一阶段。所以实际上,算法是在云端或者在本地的自学习的算法,随着数据的积累,也会更加智能。

3