很多人一听到“机器人”这三个字脑中就会浮现“外形酷炫”、“功能强大”、“高端”等这些词,认为机器人就和科幻电影里的“终结者”一样高端炫酷。其实不然,在本文中,我们将探讨机器人学的基本概念,并了解机器人是如何完成它们的任务的。
3.家庭自制机器人
在本文的最后几部分,我们来看看机器人世界中最引人注目的领域:人工智能和研究型机器人。多年来,这些领域的专家们使机器人科学有了长足的进步,但他们并不是机器人的唯一制造者。几十年中,以此为爱好的人尽管为数很少,但充满热情,他们一直在全世界各地的车库和地下室里制造机器人。
家庭自制机器人是一种正在迅速发展的亚文化,在互联网上具有相当大的影响力。业余机器人爱好者利用各种商业机器人工具、邮购的零件、玩具甚至老式录像机组装出他们自己的作品。
和专业机器人一样,家庭自制机器人的种类也是五花八门。一些到周末才能工作的机器人爱好者们制造出了非常精巧的行走机械,而另一些则为自己设计了家政机器人,还有一些爱好者热衷于制造竞技类机器人。在竞技类机器人中,人们最熟悉的是遥控机器人战士,就像您在《战斗机器人》(BattleBots)节目中看到的那样。这些机器算不上“真正的机器人”,因为它们没有可重新编程的计算机大脑。它们只是加强型遥控汽车。
比较高级的竞技类机器人是由计算机控制的。例如,足球机器人在进行小型足球比赛时完全不需要人类输入信息。标准的机器人足球队由几个单独的机器人组成,它们与一台中央计算机进行通信。这台机算机通过一部摄像机“观察”整个球场,并根据颜色分辨足球、球门以及己方和对方的球员。计算机随时都在处理此类信息,并决定如何指挥它的球队。
适应性和通用性
个人计算机革命以其卓越的适应能力为标志。标准化的硬件和编程语言使计算机工程师和业余程序员们可以根据其特定目的制造计算机。计算机零件与工艺用品有几分相似,它们的用途不计其数。
迄今为止的大多数机器人更像是厨房用具。机器人专家们将它们制造出来以专门用于特定用途。但是它们对完全不同的应用场景的适应能力并不是很好。
这种情况正在改变。一家名叫EvolutionRobotics的公司开创了适应型机器人软硬件领域的先河。该公司希望凭借一款易用的“机器人开发人员工具包”开拓出自己的利基市场。
这个工具包有一个开放式软件平台,专门提供各种常用的机器人功能。例如,机器人学家可以很容易地将跟踪目标、听从语音指令和绕过障碍物的能力赋予它们的作品。从技术角度来看,这些功能并不具有革命性的意义,但不同寻常的是,它们集成在一个简单的软件包中。
这个工具包还附带了一些常见的机器人硬件,它们可以很容易地与软件相结合。标准工具包提供了一些红外传感器、马达、一部麦克风和一台摄像机。机器人专家可以利用一套加强型安装组件将所有这些部件组装起来,这套组件包括一些铝制身体部件和结实耐用的轮子。
当然,这个工具包不是让您制造平庸的作品的。它的售价超过700美元,绝不是什么廉价的玩具。不过,它向新型机器人科学迈进了一大步。在不远的将来,如果您要制造一个可以清洁房间或在您离开的时候照顾宠物的新型机器人,您可能只需编写一段BASIC程序就能做到,这将为您省下一大笔钱。
4.人工智能
人工智能(AI)无疑是机器人学中最令人兴奋的领域,无疑也是最有争议的:所有人都认为,机器人可以在装配线上工作,但对于它是否可以具有智能则存在分歧。
就像“机器人”这个术语本身一样,您同样很难对“人工智能”进行定义。终极的人工智能是对人类思维过程的再现,即一部具有人类智能的人造机器。人工智能包括学习任何知识的能力、推理能力、语言能力和形成自己的观点的能力。目前机器人专家还远远无法实现这种水平的人工智能,但他们已经在有限的人工智能领域取得了很大进展。如今,具有人工智能的机器已经可以模仿某些特定的智能要素。
计算机已经具备了在有限领域内解决问题的能力。用人工智能解决问题的执行过程很复杂,但基本原理却非常简单。首先,人工智能机器人或计算机会通过传感器(或人工输入的方式)来收集关于某个情景的事实。计算机将此信息与已存储的信息进行比较,以确定它的含义。计算机会根据收集来的信息计算各种可能的动作,然后预测哪种动作的效果最好。当然,计算机只能解决它的程序允许它解决的问题,它不具备一般意义上的分析能力。象棋计算机就是此类机器的一个范例。
某些现代机器人还具备有限的学习能力。学习型机器人能够识别某种动作(如以某种方式移动腿部)是否实现了所需的结果(如绕过障碍物)。机器人存储此类信息,当它下次遇到相同的情景时,会尝试做出可以成功应对的动作。同样,现代计算机只能在非常有限的情景中做到这一点。它们无法像人类那样收集所有类型的信息。一些机器人可以通过模仿人类的动作进行学习。在日本,机器人专家们向一部机器人演示舞蹈动作,让它学会了跳舞。
有些机器人具有人际交流能力。Kismet是麻省理工学院人工智能实验室制作的机器人,它能识别人类的肢体语言和说话的音调,并做出相应的反应。Kismet的作者们对成人和婴儿之间的交互方式很感兴趣,他们之间的交互仅凭语调和视觉信息就能完成。这种低层次的交互方式可以作为类人学习系统的基础。
Kismet机器人
Kismet和麻省理工学院人工智能实验室制造的其他机器人采用了一种非常规的控制结构。这些机器人并不是用一台中央计算机控制所有动作,它们的低层次动作由低层次计算机控制。项目主管罗德尼·布德克斯(RodneyBrooks)相信,这是一种更为准确的人类智能模型。人类的大部分动作是自动做出的,而不是由最高层次的意识来决定做这些动作。
人工智能的真正难题在于理解自然智能的工作原理。开发人工智能与制造人造心脏不同,科学家手中并没有一个简单而具体的模型可供参考。我们知道,大脑中含有上百亿个神经元,我们的思考和学习是通过在不同的神经元之间建立电子连接来完成的。但是我们并不知道这些连接如何实现高级的推理能力,甚至对低层次操作的实现原理也并不知情。大脑神经网络似乎复杂得不可理解。
因此,人工智能在很大程度上还只是理论。科学家们针对人类学习和思考的原理提出假说,然后利用机器人来实验他们的想法。
正如机器人的物理设计是了解动物和人类解剖学的便利工具,对人工智能的研究也有助于理解自然智能的工作原理。对于某些机器人专家而言,这种见解是设计机器人的终极目标。其他人则在幻想一个人类与智能机器共同生活的世界,在这个世界里,人类使用各种小型机器人来从事手工劳动、健康护理和通信。许多机器人专家预言,机器人的进化最终将使我们彻底成为半机器人,即与机器融合的人类。有理由相信,未来的人类会将他们的思想植入强健的机器人体内,活上几千年的时间!
无论如何,机器人都会在我们未来的日常生活中扮演重要的角色。在未来的几十年里,机器人将逐渐扩展到工业和科学之外的领域,进入日常生活,这与计算机在20世纪80年代开始逐渐普及到家庭的过程类似。
本文来源于互联网,e-works本着传播知识、有益学习和研究的目的进行的转载,为网友免费提供,并以尽力标明作者与出处,如有著作权人或出版方提出异议,本站将立即删除。如果您对文章转载有任何疑问请告之我们,以便我们及时纠正。联系方式:editor@e-works.net.cn tel:027-87592219/20/21。