最新新闻
我要投稿
联系电话:027-87592219/20/21转188
投稿邮箱:tb@e-works.net.cn
您所在的位置:首页 > 智库 > 智能装备

水下机器人发展趋势

发布时间:2015-08-26 作者:徐玉如 李彭超  来源:互联网
随着人类海洋开发的步伐不断加快,水下机器人技术作为人类探索海洋最重要的手段得到了空前的重视和发展。作者对水下机器人进行了定义与分类,介绍了近年来国内外水下机器人的发展现状与发展趋势,重点针对智能水下机器人的主要关键技术及未来发展方向进行了分析。

    3.2 智能水下机器人的发展趋势

    3.2.1 整体设计的标准化和模块化

    为了提升智能水下机器人的性能、使用的方便性和通用性,降低研制风险,节约研制费用,缩短研制周期,保障批量生产,智能水下机器人整体设计的标准化与模块化是未来的发展方向。在智能水下机器人研发过程中依据有关机械、电气、软件的标准接口与数据格式的要求,分模块进行总体布局和结构优化的设计和建造。智能水下机器人采用标准化和模块化设计,使其各个系统都有章可依、有法可循,每个系统都能够结合各协作系统的特性进行专门设计,不但可以加强各个系统的融合程度,提升机器人的整体性能,而且通过模块化的组合还能轻松实现任务的扩展和可重构。

    3.2.2 高度智能化

    由于智能水下机器人工作环境的复杂性和未知性,需要不断改进和完善现有的智能体系结构,提升对未来的预测能力,加强系统的自主学习能力,使智能系统更具有前瞻性。目前针对如何提升水下机器人的智能水平,已经对智能体系结构、环境感知与任务规划等领域展开一系列的研究。新一代的智能水下机器人将采用多种探测与识别方式相结合的模式来提升环境感知和目标识别能力,以更加智能的信息处理方式进行运动控制与规划决策。它的智能系统拥有更高的学习能力,能够与外界环境产生交互作用,最大限度的适应外界环境,帮助其高效完成越来越倚重于它的各种任务,届时智能水下机器人将成为名副其实的海洋智能机器人。

    3.2.3 高效率、高精度的导航定位

    虽然传统导航方式随着仪器精度和算法优化,精度能够提高,但由于其基本原理决定的误差积累仍然无法消除,所以在任务过程中需要适时修正以保证精度。全球定位系统虽然能够提供精确的坐标数据,但会暴露目标,并容易遭到数据封锁,不十分适合智能水下机器人的使用。所以需要开发适于水下应用的非传统导航方式,例如:地形轮廓跟随导航、海底地形匹配导航、重力磁力匹配导航和其他地球物理学导航技术。其中海底地形匹配导航在拥有完善的并能及时更新的电子海图的情况下,是非常理想的高效率、高精度水下导航方式,美国海军已经在其潜艇和潜器的导航中积极应用。未来水下导航将结合传统方式和非传统方式,发展可靠性高、集成度高并具有综合补偿和校正功能的综合智能导航系统。

    3.2.4 高效率与高密度能源

    为了满足日益增长的民用与军方的任务需求,智能水下机器人对续航力的要求也来越高,在优化机器人各系统能耗的前提下,仍需要提升机器人所携带的能源总量。目前所使用的电池无论体积和重量都占智能水下机器人体积和重量的很大部分,能量密度较低,严重限制了各方面性能的提升。所以,急需开发高效率、高密度能源,在整个动力能源系统保持合理的体积和质量的情况下,使水下机器人能够达到设计速度和满足多自由度机动的任务要求。

    3.2.5 多个体协作

    随着智能水下机器人应用的增多,除了单一智能水下机器人执行任务外,会需要多个智能水下机器人协同作业,共同完成更加复杂的任务。智能水下机器人通过大范围的水下通讯网络,完成数据融合和群体行为控制,实现多机器人磋商、协同决策和管理,进行群体协同作业。多机器人协作技术在军事上和海洋科学研究方面潜在的用途很大,美国在其《无人水下机器人总体规划》(UUV Master Plan)中规划由多艘智能水下机器人协同作战,执行对潜艇的侦查、追踪与猎杀,美国已经着手研究多个智能水下机器人协同控制技术,其多个相关研究院所联合提出多水下机器人协作海洋数据采集网络的概念,并进行了大量研究,为实现多机器人协同作业打基础。

4 AUV涉及到的重点技术及未来需要突破的难点

    虽然近些年,水下机器人技术得到空前发展,但仍有大量的关键技术与难点需要突破。以目前的技术现状来看,智能水下机器人离满足海洋开发和军事装备需求还有一定的距离,这其中的关键技术有:

    4.1 智能水下机器人总体布局和载体结构

    没有一种全功能的机器人能完成所有的任务,所以需要依据水下机器人任务和工作需求,结合使用条件进行总体布局设计,对水下机器人总体结构、流体性能、动力系统、控制与通讯方式进行优化,提高有限空间的利用效率。水下机器人工作在复杂的海洋环境中,其总体结构在满足压力、水密、负载和速度需求的前提下要实现低阻力、高效率的空间运动。另外在有限的空间中,需要多种传感器的配合,进行目标识别、环境探测和自主航行等任务。整个大系统整合了多种分系统,需要完善的系统集成设计和电磁兼容设计,才能确保控制与通讯信息流的通畅。

    4.1.1 智能水下机器人设计的标准化和模块化

    为了提高智能水下机器人的性能和质量、使用的方便性和通用性,降低研制风险,节约研制费用,缩短研制周期,提高与现有邻近系统的协作能力、以及保障批量生产能力,智能水下机器人的标准化是智能水下机器人的研制与生产的迫切需求。因为模块化是标准化的高级形式,标准化的目的是要实现生产的模块化和各功能部件的模块化组装以实现使用中的功能扩展和任务可重构。在智能水下机器人标准化的进程中需要提出有关机械、电气、软件标准接口和数据格式的概念,在设计和建造过程中分模块进行总体布局和结构优化设计。

    4.1.2 小型化、轻型化和仿生技术的应用

    鉴于智能水下机器人需要能在较大范围的海域航行,从流体动力学的角度宜采用类似于鱼雷的细长的回转体,并尽可能采用轻型复合材料为机器人提供较大的正浮力,以提高机器人的续航力和负载能力。这些材料需要有质量轻、强度高、耐腐蚀性好、抗生物附着能力强等特点,并要有一定的抑制噪声的能力以降低背景噪声。采用小型化技术的水下机器人具有个体小、机动灵活、隐身性好、布施方便等特点,非常适合进行智能化水下作业。

    各个行业都十分注重从大自然的智慧中汲取灵感寻找突破,仿生学在诸多领域已经有长足的发展。由于鱼类摆尾式机动不但效率高、操纵灵活,而且尾迹小、几乎不产生噪声,是水下推进和操控的最佳方式。目前国内外的学者正进行积极的研究,试图将摆动式推进应用到之后的智能水下机器人中。该研究仍处于理论研究阶段,要实现实际意义上的多自由度闭环控制的推进,满足各种工作需求,把潜在优势转变成可利用技术还有很多工作要做。