摘要 孔类陶瓷零件在工业中正得到广泛的应用,珩磨技术是孔类陶瓷零件加工中的重要环节之一。从陶瓷材料种类和珩磨工具两方面对陶瓷珩磨加工质量进行了研究,并从应用角度,分析了陶瓷材料的平顶珩磨表面。 工程陶瓷材料因其优良的机械性能在工程中有广阔的应用前景。孔类陶瓷零件正应用于许多工业领域,无冷却系统陶瓷发动机采用陶瓷缸体,可提高燃料利用率和行驶效率,并降低油耗。石油钻探设备中,采用ZTM(氧化锆增韧莫来石)陶瓷材料制作的泥浆泵缸套,其寿命是硬质合金缸套的3倍以上,大幅度提高了泥浆泵的工作寿命和可靠性。此外,陶瓷轴承套以及纺织用陶瓷柱塞套等均在工业中得到应用。 陶瓷材料的种类不同,其磨削加工表面粗糙度值存在差异,加工后陶瓷材料表面粗糙度值在一定程度上反映了材料的磨削加工性[2]。陶瓷材料的珩磨加工具有同样的规律。在相同实验条件下,珩磨加工4种陶瓷材料:95Al2O3,ZTM,ZTM/SiCp和HPSN。其中,油石型号为SFH 72×6×6×2 RVD 230/270 B 75。实验结果见图1。 图1 陶瓷材料表面Ra值 上述几种材料中,95Al2O3材料的强度最低、脆性最大,易于加工,材料以脆性方式去除,加工表面存在脆性崩除留下的凹坑。加上材料自身气孔率较高,所以加工后的表面粗糙度值最大。95Al2O3的Ra值为0.85 μm,远远高于其它几种陶瓷材料。ZTM陶瓷材料,因在莫来石基体中加入氧化锆粒子,受应力诱导相变增韧机制和微裂纹增韧机制的作用,其强度和韧性得到了提高,可以获得比95Al2O3小的表面粗糙度值。ZTM/SiCp陶瓷材料,在ZTM的基础上,添加SiC颗粒弥散相,具有以裂纹偏转为主的强韧化增韧机制,使颗粒补强ZTM/SiCp陶瓷材料的强度和韧性进一步提高,在相同加工条件下,材料脆性断裂去除的概率减小,加上热压烧结陶瓷制品的密度高,因此,ZTM/SiCp陶瓷材料的珩磨加工表面粗糙度值较低,在数值上与HPSN陶瓷材料基本接近。可见,选择工程陶瓷材料珩磨加工工艺参数时,还应考虑被加工件材质因素的影响。 2 珩磨工具对陶瓷珩磨表面粗糙度的影响 工程陶瓷材料珩磨加工表面质量的影响因素可分为两类:珩磨工艺参数和珩磨工具参数。其中,工具参数的影响最为显著。本文以ZTM陶瓷材料为例,主要考察金刚石油石粒度、浓度以及结合剂3个工具参数对工程陶瓷珩磨加工表面粗糙度的影响规律。 图2 ZTM陶瓷材料表面Ra值 细,磨粒与陶瓷材料的相互作用区域范围小,磨粒的切削能力弱,材料去除量少,在陶瓷材料表面产生的磨削痕迹浅。于是,粗糙度参数Ra值较低。工程陶瓷材料精加工时,应选择细粒度的金刚石油石工具,避免划痕的产生,以获得合格的表面质量。 2.2 金刚石油石浓度 对于有配合精度要求的精密偶件,其最终加工表面质量,在使用中显得更为重要。以陶瓷材料在汽车、摩托车发动机缸体等应用为例,如果材料表面质量差,就会发生表面磨损现象(见图3):陶瓷材料表面轮廓锋利的凸峰或者切削与之配合的金属部件或者陶瓷材料之间表面轮廓尖峰相互撞击,最终导致部件配合尺寸超过公差范围,配合精度下降,从而增加燃料的消耗。 图3 配合面的磨损 陶瓷平顶珩磨经过粗珩和精珩两道工序,即先用粒度140/170的树脂结合剂金刚石油石进行粗珩,形成网纹;再用粒度270/325的SiC油石精珩,去掉粗加工表面网纹凸峰的尖顶部分。平顶珩磨加工方法,不仅可去除工程陶瓷材料表面轮廓中锋利的凸锋,避免发生图3的磨损现象,而且增大加工孔表面的支承面积,缩短孔表面的“跑合”期,延长“稳定”磨损期,进一步增加零件加工表面的耐磨性。 图4 Mg-PSZ材料表面轮廓 材料表面抗磨料磨损能力与材料表面轮廓微观不平度形状特性有关的轮廓支承长度率曲线(tp曲线)和幅度分布曲线有密切关系,两条曲线形象说明材料表面的耐磨性能[3,4]。如果材料表面轮廓很平坦,则tp曲线形状较平坦,表面轮廓高度幅度分布范围窄,这说明材料表面的耐磨性好。反之,如果材料表面存在许多凸起尖峰,则tp曲线形状较陡,表面轮廓高度幅度分布范围宽,材料表面耐磨性不好。 (1)陶瓷材料种类不同,其珩磨加工表面粗糙度值存在一定的差异。陶瓷材料的强度越低、脆性越高,其加工表面粗糙度值越大。陶瓷材料的珩磨加工还应考虑材料的影响因素。
|