数控机床的加工精度目前已经有了高速的发展,数控机床的加工精度已从原来的丝级(0.01 mm)提升到目前的微米级(0.001 mm)。而超精密数控机床的微细切削和磨削加工,精度可稳定达到0.05 μm左右,形状精度可达0.01μm左右。采用光、电、化学等能源的特种加工精度可达到纳米级(0.001 μm)。可以说,数控机床的精度已经进入亚微米、纳米级超精加工时代。在这样高精密度要求下,必须要把握数控机床的精度分析,保证不会出现由于操作问题而导致的精度误差。
2.1 间隙误差的影晌
进给机构的机械传动机构由减速齿轮、连轴节、滚珠丝杠副及支承轴承组成。在这些机构的组成之中,如果出现一定的连接不稳定就会导致间隙的产生,产生的间隙就会改变整体的加工环节误差。滚珠丝杠与螺母之间的间隙直接影响工作台的进给精度。设滚珠丝杠与螺母之间的间隙为SF,则反转时造成工作台进给误差61-SF。不仅如此,丝杠螺母副的间隙还影响丝杠螺母副的刚度,进而影响工作台进给精度。针对这些误差问题必须要转变为自动化操作控制方式,在机械换向时,对换向时间和换向方式做出改变。而对于滚珠丝杠与螺母之间间隙的消除方法,要重视对间隙的偏差测定,通过反复的间隙测量来确定出具体的偏差基数,要求测出机床各轴的各项原始误差,比较成熟的测量方法是激光干涉仪,测量精度高。用双频激光干涉仪进行误差测量,需时间长,对操作人员调试水平要求高,主要是对误差测量环境要求高,常用于三坐标测量机的检测,不适宜生产现场操作。相对误差分解、合成补偿法,测量方法相对简单,一次测量可获得整个圆周的数据信息,同时可以满足机床精度的检测和机床评价。目前也有不少的误差分解的方法,由于机床情况各异,难以找到合适的通用数学模型进行误差分解,并且对测量结果影响相同的原始误差项不能进行分解,也难以推广应用。测定之后要再将这种基数输入到程序控制之中,这样就可以最大限度地保证数控程序进行时的偏差数据最小化,做到补偿适当。具体的补偿方法如下:(1)备份CNC控制系统中的已有补偿参数;(2)由计算机产生进行逐点定位精度测量的机床CNC程序,并传送给CNC系统;(3)自动测量各点的定位误差;f4)根据指定的补偿点产生一组新的补偿参数,并传送给CNC系统,螺距自动补偿完成:(5)重复进行精度验证。除此之外,对于脉冲当量补偿就是指每输出一个脉冲后数控机床移动部件相应的移动量它的大小视机床精度而定,一般为0.01~0.0005mm。脉冲当量影响数控机床的加工精度,它的值取得越小,加工精度越高。当然,数控机床的误差调正有两种方法,一种是靠数控系统补偿,一种是调整机械部分,如果对于数控系统来说进行数控补偿程序会十分复杂困难,那么就可以通过调整丝杠间隙进行消除。
2.2 精度的反向误差控制
机床的动态精度,即机床各轴的定位精度P、重复定位精度Ps和反向误差U等指标。它们是以VDl/DGQ3441的方法进行检测。考核数控机床的定位精度P是用以下公式进行计算“P=6+L/300”式中L代表数控机床坐标轴的长度。针对数控机床的定位精度来说,应该是与机床的动态精度有着密切的利害关系。其中,反向偏差的测定方法:在所测量坐标轴的行程内,预先向正向或反向移动一个距离并以此停止位置为基准,再在同一方向给予一定移动指令值,使之移动一段距离,然后再往相反方向移动相同的距离,测量停止位置与基准位置之差。在靠近行程的中点及两端的三个位置分别进行多次测定(一般为七次),求出各个位置上的平均值,以所得平均值中的最大值为反向偏差测量值。在测量时一定要先移动一段距离。如:数控车轮车轴专用外圆,在磨削工件的R与外圆直径交界处后,发现有明显的过渡不圆滑痕迹。那么在处理这类问题的时候,就要考虑该设备在磨削工件时,采用宽砂轮一次性切入磨削,砂轮修正器的金钢石笔安装在工作台上,利用工作台Z轴和砂轮架×轴的复合括补运动,使砂轮的形状与精度修正成与工件完全一样,再用修正好的砂轮磨削工件。由于该工件外圆形状的特殊性,需要X轴有正负方向的运行,在检查时发现×轴和Z轴均有明显的反向间隙存在,使砂轮修正作反向运行时二轴有瞬间停顿现象的出现,造成轮修圆弧连接处有痕迹,最终使该现象发生在砂轮磨削工件的表面上。由于丝杠螺母副之间的间隙存在,当工作台反向时,必产生反向间隙误差而影响到工作台送料定位精度。丝杠螺母副之间的间隙具有两个特点:(1)具有相对的稳定性,即在一定范围内间隙是一个常数;(2)随着机械传动的磨损而相应增加。因此,在控制过程中可以预先测出其间隙,利用反向间隙的统计平均值,对其产生的定位误差进行软件补偿。在软件设计时,只需设计一方向寄存器,用来判断工作台是否换向,采用不换向不补偿,每换向一次补偿一次来消除丝杠螺母的反向间隙误差。
总之,对于数控机床的加工工艺和精度分析来说,都必须要把握技术尺度,将合理地操作原理运用到具体的加工环节中去,从数控机床的加工工艺来说,要重视有关影响数控机床加工工艺的若干问题,结合具体的工艺加工情况,采用理论联系实际的操作方法,在编程过程中保证精准、细致,对出现的问题也要及时进行分析、总结,确保整个加工工艺路线合理,以能够有加工出色的产品为最终目的。从数控机床的精度分析来看,要重视研究提高数控机床加工精度的方法,首先要对加工设备产生误差原因和影响进行合理地剖析,研究影响数控机床精度的因素,找出间隙误差和反向误差的处理方法,开展定位精度的测量。对于数控机床的工艺和精度控制来说要依靠数控编程和仿真技术的完善以及具体操作的合理,来进行合理有效的机床工艺控制,保证利用现今的数控技术来确保加工工艺和精度更加完美,以达到延长数控机床使用寿命,提供加工产品优秀性的目的。