一、关于大数据时代
大数据时代开始于2001年,我是比较认可这一观点的。因为大数据这个词语被创造出来是在20世纪90年代,在2000年的时候第一次在学术论文上有人将它提出,在2003年的时候在Francis X.Diebolt在《宏观经济测量和预测的大数据动态因子模型》一书中正式将大数据这个词语进行诠释和应用。自然,在13年前的那个时代,全世界的热点是在于互联网,在于互联网门户或者社交。在2005年的时候,当前最火爆的Hadoop项目就已经被创建,之所以在10多年后大数据和Hadoop项目才受到热捧和关注主要是因为当时的数据还不够大。在现如今的世界,随着互联网、移动互联网、IOT、智能设备的发展,你举目四望会发现整个世界每秒都在生产海量的数据,我们所有的世界空间、所有的行为路径都在被数据给描述,我们都在生产数据又依赖于数据。在非量子的认知体系内,我们的确处于一个无边无际的大数据时代,这是一个数据为王、数据即能源的时代。
二、说一说工业4.0
对于工业4.0这个概念,我认为两个最权威的定义就可以解释的明白。工业4.0这个概念是德国最先提出的,德国对于工业4.0的解释是这样的:所谓的工业四代(Industry4.0)是指利用物联信息系统(Cyber—PhysicalSystem简称CPS)将生产中的供应,制造,销售信息数据化、智慧化,最后达到快速,有效,个人化的产品供应。中国正处在两化融合升级的过程,因为中国政府迅速与德国政府就工业4.0达成合作。在中德关于工业4.0的《中德合作行动纲要》中,有关工业4.0合作的内容共有4条,第一条就明确提出工业生产的数字化就是工业4.0。现在,我觉得我们可以很好的理解工业4.0的意义,工业4.0就是工业数字化,而更人们兴奋的是在工业数字化背后的工业大数据。工业数字化或者说工业智能化的潜力是显而易见且令人震撼的,有幸在一个项目中参观了蒙牛6期工厂,整个智能化、自动化的生产线的确给我了很大的震撼,而且作为一个外行的我就能明白这个是一个多么有价值有意义的事情。在参观中,我发现整个蒙牛工厂6期最核心的部分是其设在厂房中央的智能数据控制中心,这个智能数据控制中心的作用就是根据所有设备的运行数据的分析结果控制整个厂房的所有设备进行生产。根据上周末在广州与一个朋友聊天的内容,我了解到像蒙牛工厂6期的这种智能化设备的控制背后其实就是大数据的深度机器学习控制算法。那么,将德国对于工业4.0定义中的供应、制造、销售三个环节与大数据结合就是工业4.0的供应大数据、制造大数据、销售大数据,接下来我们就是要围绕这三个大数据来聊聊大数据时代与工业4.0。
三、工业4.0大数据
1、供应大数据
说供应大数据可能不太很好的准确理解其所指的是什么,但是如果说供应链大数据你肯定一下就知道其所指的是什么了。说到供应(链)大数据,我相信很多人都能想到一点如何去做供应链大数据,因为在这个互联网和物流发达的年代,全球采购已经不是什么新鲜事了。在正式切入供应大数据前,我还想先讲一个供应链的事。在去年,大家可能看到过这样一个新闻,就是一个浙江蔬菜销售商春节前从山东采购了一批大葱,这批大葱还没有运到浙江前销售价格已经涨到其采购价格的10倍以上。这位蔬菜销售商之所以在这次生意上能够躺赚,是因为他通过一些途径了解到了大葱的主产地山东去年大葱有了大面积减产的信息。那么,对于工业生产而言同样也是这样的,只有能够准确的预测到原材料采购价格的变化趋势,才能够通过最优的采购策略来大大的降低生产成本。在当前的全球经济的时代,影响工业生产某样原材料采购价格的因素有如下几种:全球的生产规模、全球的生产率、期货市场、国际环境、物流运输环境、汇率、地缘政治环境、主要生产地的政治环境等等,而这些因素绝大部分都不是直接可以拿到的数据,需要根据每个因素的关联数据进行分析才能得出。那么,在全球的环境下,要进行这些数据的收集、分析、预测只能使用大数据系统来进行。从技术的角度来看这个供应链大数据系统,需要由互联网爬虫系统、流数据处理系统、数据可视化系统四个主要的核心系统来构成。互联网爬虫系统现在有非常多开源项目可以采用,比较建议的有Nutch、Grub Next Generation等;流数据处理系统除了目前关注度比较高的Spark还可以考虑Storm和Samza;数据可视化系统可以考虑选择Cube、Fusion Charts Suit XT等,在基础支撑系统层面可以采用Hadoop的架构体系,也可以采用一些其他的调度系统如Mesos等。