最新新闻
我要投稿
联系电话:027-87592219/20/21转188
投稿邮箱:tb@e-works.net.cn
您所在的位置:首页 > 智库 > 智能生产

工业大数据三大挑战五大商业趋势

发布时间:2016-06-08 作者:佚名  来源:OFweek
关键字:大数据 物联网 
未来中国商业社会发展的五大趋势:包括数字化变革、行业整合、走出去、用户体验互动和共享平台经济。

    随着信息化与工业化的深度融合,信息技术渗透到了工业企业产业链的各个环节,条形码、二维码、工业传感器、工业自动控制系统、工业物联网等技术在工业企业中得到广泛应用,尤其是互联网、移动互联网、物联网等新一代信息技术在工业领域的应用,工业企业也进入了互联网工业的新的发展阶段,工业企业所拥有的数据也日益丰富。

图

  在设备运行的过程中,自然磨损本身会使产品的品质发生一定的变化。通过信息技术、物联网技术的发展,通过传感器技术,实时感知数据,知道产品出了什么故障,哪里需要配件,使得生产过程中的这些因素能够被精确控制,从而真正实现生产的智能化。一定程度上,工厂/车间的传感器所产生的大数据直接决定了“工业4.0”所要求的智能化设备的智能水平。

  从生产能耗角度来看,设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情况,由此能够在生产过程中不断实时优化能源的消耗。同时,对所有流程的大数据进行分析,也将会整体上大幅降低生产能耗。

  工业企业中生产线处于高速运转,由工业设备所产生、采集和处理的数据量远大于企业中计算机和人工产生的数据,从数据类型看也多是非结构化数据,生产线的高速运转则对数据的实时性要求也更高,工业大数据有三大挑战。

  全面认识“工业大数据”概念

  工业大数据这个概念目前很受关注,特别是对于资本市场来讲,其想象空间比较大,但由于相关技术范式还不明确,因此大部分看法都是基于一些不完全的技术理解所做出的判断。

  从字面上理解,工业大数据很容易被认为是大数据在工业领域的应用,也容易把工业领域的一些信息系统使用的传统数据库上升到工业大数据的数据不够大的场景,当然,还有一些商业企业更会把收集的一些毫无价值的实时数据存储起来称为工业大数据。

  迄今为止,工业4.0研究院发现的工业大数据应用场景,虽然可能从生产现场采集了大量的数据,但实际上作为分析之用的数据并不多,一般都要对数据进行清洗和预处理,以便进行更具有知识的数据分析。

    为什么不能采用诸如金融或互联网领域的大数据分析方法?这是很多互联网企业涉足到工业大数据最为困惑的问题。

  实际上,互联网企业大都不清楚工业领域的“非标”特征,大量的装备设备是非标准化的,工艺流程也是非标准化的,因此在构建工业大数据架构和模型的时候,更应该考虑行业知识的应用,这样分析的结果会更加实用。

  一些国际型工业企业(例如西门子)在构建其工业大数据范式的时候,就非常强调应用场景知识的结合,了解互联网大数据或金融大数据的行业人士可以发现,两者考虑的技术关键点是不完全相同的。

  价值观驱动了工业大数据流派

  库恩在《科学革命的结构》一书中指出,科学范式实际上是代表世界观和价值观的。工业大数据作为正在形成的一种科学革命范式,也在逐步形成各种流派,他们代表了各自派别的价值观。

  工业4.0研究院初步研究认为,广泛意义上来认识工业大数据(例如工业互联网、智能服务等概念),美国通用电气牵头的工业互联网联盟可以用“工业互联网”来代表其价值观,由德国西门子等企业组成的工业4.0平台(Plattform Industrie 4.0)更愿意用“智能服务”和“智能数据”来阐释他们对未来工业大数据的认识,当然,中国简单直接用“工业大数据”来代表未来工业的一种新范式。

  对国内的工业大数据认识更进一步细分,还可以分为清华大数据产业联合会、中关村大数据联盟以及工业4.0研究院等具有鲜明特征的流派。

4
本文来源于互联网,e-works本着传播知识、有益学习和研究的目的进行的转载,为网友免费提供,并以尽力标明作者与出处,如有著作权人或出版方提出异议,本站将立即删除。如果您对文章转载有任何疑问请告之我们,以便我们及时纠正。联系方式:editor@e-works.net.cn tel:027-87592219/20/21。