最新新闻
我要投稿
联系电话:027-87592219/20/21转188
投稿邮箱:tb@e-works.net.cn
您所在的位置:首页 > 智库 > 智能生产

基于FPGA与数控技术的钢卷尺自动切零系统研究

发布时间:2014-02-21 作者:赵结昂 单越康 项荣 叶茂  来源:万方数据
本文详细阐述了一种新的钢卷尺自动切零系统,该系统使用基于FPGA和单轴数控系统的双控制器结构,通过互相通信方式协调切零位工作,从而解决了目前钢卷尺切零系统速度慢、精度低、劳动强度大的缺陷。该技术已应用于钢卷尺切带的生产实践中,切带精度优于±0.08ram,切带速度为2—3S/条。

2 系统硬件

  系统硬件结构由双控制器及相应的功能模块组成,如图2示,主要由基于FPGA的中心控制器、KT700B单轴数控系统、送带和瞄准运动系统、气动系统等组成。各个功能模块间通过通信线进行信号传输,在控制器的控制下协调工作。

控制系统接口图

图2 控制系统接口图

  2.1 中心控制单元

  中心控制单元的主要功能是对CCD采集的视频信号进行处理,输出瞄准刻度线的位置信号和瞄准信号。图3为中心控制单元的组成框图,其中虚线内表示FPGA要实现的功能。中心控制单元主要由二值化电路、同步分离电路、FPGA、叠加电路等组成。视频信号输入后经同步分离电路分离出行同步信号和场同步信号,根据视频分划原理"。,通过对FPGA编程生成两条静态视频竖线和一条动态视频横线的控制信号,相与后控制叠加电路,即可实现显示屏幕上简单几何图形与视频图像的叠加。视频信号二值化后,以横线控制信号作为时钟基准,以视频二值化信号和“0”电压信号作为选择对象,选出监视器中横线所覆盖区域的图像的二值化信号,输入到瞄准模块和位置辨别模块。瞄准时以两条竖线与横线的交点作为瞄准的时钟基准,视频横线选出的二值化信号作为瞄准对象来实现瞄准。位置辨别时以左竖线与横线的交点为基准点,以横线选出的二值化图像信号作为时钟基准,以左竖线与横线的交点的延时信号作为判断对象,辨别瞄准刻度线在基准点的哪一边。最终,中心控制单元输出瞄准信号和位置信号给数控系统。同时为了有效地抑制系统噪声,消除接地回路的干扰,提高系统的响应速度,对输出信号进行了光电隔离。

基于FPGA的中心控制单元原理框图

图3 基于FPGA的中心控制单元原理框图

  2.2 数控系统

  数控系统采用的是上海开通公司生产的KT700B单轴数控系统,其主要功能是对电机和气动系统的控制。开始工作后,由数控系统控制压轮下压,送带电机快速转动。送带完成后,开始接收中心控制单元的位置信号和瞄准信号,控制进带电机进行慢速精确瞄准,收到瞄准信号后,控制冲切汽缸完成切带,最后控制出带压轮下压完成出带。

3 系统软件

  系统软件部分包括FPGA的程序以及数控器的程序。FPGA的主要功能是生成两条静态视频竖线、一条动态视频横线的控制信号以及产生瞄准和位置信号。数控系统控制气动系统和送带电机,实现压带、快速送带、慢速送带,出带等操作。图4为系统软件的控制流程图。

系统软件流程框图

图4 系统软件流程框图

4 系统精度分析

  影响钢卷尺自动切零机切带精度的因素主要有:钢卷尺上带调整误差,零位动态瞄准误差以及其他随机误差等。在上带调整后,瞄准基准线与切带位置距离的值和瞄准刻度线示值的差值就是上带调整误差。上带调整误差的大小与操作工人操作熟练程度有关,一般

 

  零位动态瞄准误差是由于钢卷尺的零位瞄准是动态瞄准而产生的误差。零位瞄准电路的瞄准扫描周期r为20ms,在零位瞄准电路工作时,钢卷尺在瞄准运动系统的带动下,一直处于运动状态。系统使用的送带伺服电机在慢速送带时的线速度为1.5mm/s,即慢速送带时钢卷尺的速度为1.5mm/s,那么瞄准误差为:

除了上面所说的两种误差外,系统还存在着其他随机误差,根据工厂经验,这些误差综合起来一般在0.05mm左右,因此自动切零位系统总误差小于0.08mm。

5 结束语

  采用了以FPGA为核心的中心控制单元、KTT00B数控系统等,在进行软硬件模块化设计的基础上,开发了高性价比钢卷尺自动切零系统。它不仅大大降低了操作工人的劳动强度,提高了生产速度,而且也提高了零位瞄准时的精度。图5为钢卷尺自动切零系统实物图。该系统已应用于企业生产实践中,切带精度优于±0.08mm,切带速度为2~3s/条,企业反响良好。 

2
本文为授权转载文章,任何人未经原授权方同意,不得复制、转载、摘编等任何方式进行使用,e-works不承担由此而产生的任何法律责任! 如有异议请及时告之,以便进行及时处理。联系方式:editor@e-works.net.cn tel:027-87592219/20/21。