最新新闻
我要投稿
联系电话:027-87592219/20/21转188
投稿邮箱:tb@e-works.net.cn
您所在的位置:首页 > 智讯 > 国际资讯

价值GPU引擎将成为企业战略投入

发布时间:2016-08-12 作者:米米  来源:互联网
关键字:GPU 
伴随着商业逐步转变为数据商业,企业处理海量数据的能力将会成为决定主流商业竞争的策略竞争能力。

    伴随着商业逐步转变为数据商业,企业处理海量数据的能力将会成为决定主流商业竞争的策略竞争能力,人工智能正在成主流商业竞争策略之一。一个比较明显的趋势是,以深度学习为代表的机器学习正在成为人工智能主流。

    2016年7月21日,技术解决方案提供商SoftServe发布了Big Data Snapshot研究报告,研究显示62%的大中型公司希望在未来的两年内能将机器学习用于商业分析。更多的企业正在步入人工智能商用时代,基于深度神经网络的人工智能也已经从高校和实验室走进了企业,并从企业扩散向千家万户。这意味着深度学习即将成为各大企业逐浪智能化的主流商业竞争策略。

    深度学习被GPU改变

    另一方面,硬件正在重塑颠覆性力量。由于人工智能算法有着独特的特点——分布式并行计算,这并非基于串行计算的CPU所擅长;而GPU已经不再局限于图形处理,并从一开始就应用于大规模并行计算。「芯」技术是影响企业获得人工智能的制胜关键之一。

    事实上,和斯坦福大学吴恩达教授一样,人工智能领域采用GPU优化算法的例子比比皆是。随着GPU技术突飞猛进,12颗NVIDIA GPU已经可以提供相当于2000颗CPU的深度学习性能。GPU成为人工智能行业颠覆性力量的趋势几乎锐不可当。

    2015年的ImageNet计算机图形识别大赛中的冠军深度学习算法,例如Alexnet神经网络,都是基于深度学习且在GPU加速的深度神经网络,这也难怪《连线》杂志惊叹GPU在人工智能时代的崛起。

    从当前人工智能的商业需求和硬件发展速度来看,GPU在帮助人工智能走向商用显然具有极大的优势。NVIDIA在今年发布的世界首款GPU深度学习超级计算机DGX-1正是在这种情况下应运而生,也是GPU帮助企业完成新时代使命和应对竞争挑战的标志性产品之一。

DGX-1

图1 DGX-1

    全新架构、颠覆性硬件,GPU推动人工智能商用快速到来

    全球独创的GPU深度学习超级计算机NVIDIA DGX-1基于史上最先进的超大规模数据中心加速器NVIDIA Tesla P100 GPU,使用了NVIDIA 2016年最新发布的第五代的Pascal架构。

    作为新一代GPU架构,Pascal带来了显著的性能提升。根据NIVIDIA的数据,Pascal GPU在训练深度神经网络的性能方面有1个数量级的提高。2015年GTC大会上,用4颗Maxwelll GPU训练Alexnet深度神经网络需要25小时,到了 2016年GTC大会上用8颗 Pascal GPU则只用2小时;对比英特尔双路至强E5服务器,训练Alexnet网络需要150个小时,而DGX-1只需要2个小时。

    Pascal GPU架构的优势又如:引入了NVIDIA独家的新高速总线NVLink,专门用于GPU以及GPU与CPU的高速互连,GPU最高能够以160GB/s的双吐带宽访问系统内存,相当于PCIe传统带宽的5倍;采用了目前最快、容量最高的堆叠式内存技术HBM2,Tesla P100也是全球首款采用HBM2内存的GPU;显著改进编程模型的统一内存,以单一统一虚拟地址来访问系统中所有CPU和GPU内存,极大简化了程序的可移植性及数据吞吐能力等。

Pascal GPU架构

图2 Pascal GPU架构

    在迎接商业智能时代的过程中,人们重新发现硬件技术革新的魅力。微软研究院首席语音科学家黄学东表示:「微软正在开发具有1,000 多层的超级深度神经网络。NVIDIA Tesla P100的惊人性能将让微软CNTK能够加速实现人工智能的突破。

    把250台服务器放到一个盒子里,微型超级计算机还能为AI带来什么?

    当企业还在惊叹超级计算机如何实现只有一个家用PC主机大小时候,可能也在权衡自己拥抱AI的成本。简单粗暴地说,售价约合80万人民币的NVIDIA DGX-1从性能上相当于把250台服务器装在了一个盒子里。从企业迈向人工智能的经济学角度来说,这一价格已经可以忽略:

    NVIDIA DGX-1提供8颗Tesla P100加速器、每颗GPU 16GB内存、7TB固态硬盘DL高速缓存等配置,吞吐量相当于250台E5双路X86服务器。那么,按2万元人民币一台E5服务器简单估算,250台即500万的成本,这还不包括机房、网络、电力、人工、维护等额外成本。而DGX-1采用3U架上型机箱,可单独使用也可以集成到集群当中,显然,如果用DGX-1做集群更划算。

    NVIDIA DGX-1的革命性不仅限于多快好省,它还提供一整套优化的深度学习软件,这符合其面向深度学习和人工智能领域的角色定位。Deep Learning SDK开发工具包、NVIDIA DIGITS深度学习管理调度平台、Deep Learning开源框架等定制化软件为深度学习提供了全方位的软件支持,开箱即用可谓是GPU 深入软件领域支持人工智能产业的匠心之笔。

    其中,Deep Learning SDK开发工具包内含强大的工具及类库,可用于设计、开发和部署面向GPU优化的深度学习应用。其中的类库包括深度学习基础 cuDNN、线性代数、稀疏矩阵、多GPU通信以及全面的CUDA C\C++开发环境。NVIDIA DIGITS 深度学习管理调度平台为图像视频类数据分类和识别,提供了包括LeNet、AlexNet、GoogLeNet等在内的预设优化算法。除此之外,NVIDIA 还定期更新开发者网站,为开发者提供更多的优化算法——如果说GPU已经是深度学习领域不能或缺的组成,那么这款面向人工智能机器学习的NVIDIA DGX-1则让更多企业抛开束缚,以更快的步伐迈向人工智能。

    DGX-1的上市有望激活人工智能的大规模商用

    过去两年中,与NVIDIA在深度学习方面合作的企业激增了近 35 倍,和百度、谷歌、Facebook、微软一样将 NVIDIA GPU应用于深度学习领域的企业增至3,400多家,横跨医疗、生命科学、能源、金融服务、汽车、制造业以及娱乐业等多个行业。

    中国企业也在成为人工智能产业的生力军。这款体积微型、性能强悍、软硬件兼顾的NVIDIA DGX-1一经发布即吸引了中国客户的眼光。HPC行业翘楚中科曙光成为NVIDIA DGX-1在中国最重要的战略合作伙伴之一,而全球领先的监控产品供应商、中国平安城市解决方案提供商海康威视也成为NVIDIA DGX-1的首单客户,后者将把DGX-1用于视频监控方面的深度学习超级计算机项目上。

    NVIDIA DGX-1显然能够大幅提升AI模型的学习和训练时间,加快复杂的非结构化数据的处理效率,比如工业生产线检测的图片、医疗影像视频、道路交通图片与视频分析等等,帮助企业尽快、尽早地从AI算法中受益。

    结语

    对于企业来说,在大的产业趋势到来之前,只有领先一步,才能步步占据先机。在商用人工智能时代,需要一个高价值的GPU引擎,来创造高价值的商业模式(包括新的产品、服务与解决方案),从而带来高价值回报;这同时也是下一个商业世纪的核心竞争力,是企业不可忽视的战略性投入。
 

本文来源于互联网,e-works本着传播知识、有益学习和研究的目的进行的转载,为网友免费提供,并以尽力标明作者与出处,如有著作权人或出版方提出异议,本站将立即删除。如果您对文章转载有任何疑问请告之我们,以便我们及时纠正。联系方式:editor@e-works.net.cn tel:027-87592219/20/21。