最新新闻
我要投稿
联系电话:027-87592219/20/21转188
投稿邮箱:tb@e-works.net.cn
您所在的位置:首页 > 智库 > 智能生产

数控系统与数控机床技术的发展趋势

发布时间:2010-09-30 作者:王彩霞  来源:万方数据
随着计算机技术的高速发展,传统的制造业开始了根本性变革,各工业发达国家投入巨资对现代制造技术进行研究开发,提出了全新的制造模式。在现代制造系统中,数控技术是关键技术,它集微电子、计算机、信息处理、自动检测、自动控制等高新技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化、智能化起着举足轻重的作用。本文对国内外数控系统的发展概况,趋势功能及发展方向等诸多方面进行了阐述。

    数控技术是一门集计算机技术、自动化控制技术、测量技术、现代机械制造技术、微电子技术、信息处理技术等多学科交叉的综合技术,是近年来应用领域中发展十分迅速的一项综合性的高新技术。它是为适应高精度、高速度、复杂零件的加工而出现的,是实现自动化、数字化、柔性化、信息化、集成化、网络化的基础,是现代机床装备的灵魂和核心,有着广泛的应用领域和广阔的应用前景。

1 数控系统发展趋势

    从1952年美国麻省理工学院研制出第1台实验性数控系统,到现在已走过了46年历程。数控系统由当初的电子管式起步,经历了以下几个发展阶段:分立式晶体管式→小规模集成电路式→大规模集成电路式→小型计算机式→超大规模集成电路→微机式的数控系统。到20世纪80年代,总体发展趋势如下。

    数控装置由NC向CNC发展;广泛采用32位CPU组成多微处理器系统;提高系统的集成度、缩小体积、采用模块化结构、便于裁剪、扩展和功能升级,满足不同类型数控机床的需要;驱动装置向交流、数字化方向发展;CNC装置向人工智能化方向发展;采用新型的自动编程系统;增强通信功能;数控系统可靠性不断提高等。总之,数控机床技术不断发展,功能越来越完善,使用越来越方便,可靠性越来越高,性能价格比也越来越高。到1990年,全世界数控系统专业生产厂家年产数控系统约13万台套。

2 国内外数控系统发展趋势

2.1 新一代数控系统采用开放式体系结构

    进入20世纪90年代以来,由于计算机技术的飞速发展,推动数控机床技术更快的更新换代。世界上许多数控系统生产厂家利用PC机丰富的软硬件资源开发开放式体系结构的新一代数控系统。开放式体系结构使数控系统有更好的通用性、柔性、适应性、扩展性,并向智能化、网络化方向发展。近几年,许多国家纷纷研究开发这种系统。如美国科学制造中心(NCMS)与空军共同领导的“下一代工作站/机床控制器体系结构”——NGC,欧共体的“自动化系统中开放式体系结构”——OSACA,日本的OSEC计划等。一些开发研究成果已得到应用,如Cincinnati-Milacron公司从1995年开始生产的加工中心、数控铣床、数控车床等产品中采用了开放式体系结构的A2100系统。开放式体系结构可以大量采用通用微机的先进技术,如多媒体技术,实现声控自动编程,图形扫描自动编程等。数控系统继续向高集成度方向发展,每个芯片上可以集成更多个晶体管,使系统体积更小、更加小型化、微型化,可靠性大大提高。利用多CPU的优势,实现故障自动排除;增强通信功能、提高进线、联网能力。开放式体系结构的新一代数控系统,其硬件、软件和总线规范都是对外开放的,由于有充足的软、硬件资源可供利用,不仅使数控系统制造商和用户进行的系统集成得到有力的支持,而且也为用户的二次开发带来极大方便,促进了数控系统多档次,多品种的开发和广泛应用,既可通过升档或剪裁构成各种档次的数控系统,又可通过扩展构成不同类型数控机床的数控系统,开发生产周期大幅缩短。这种数控系统可随CPU升级而升级,结构上不必变动。

2.2 新一代数控系统控制性能大幅提高

    数控系统在控制性能上向智能化发展。随着人工智能在计算机领域的渗透和发展,数控系统引入了自适应控制,模糊系统和神经网络的控制机理,不但具有自动编程、前馈控制、模糊控制、学习控制、自适应控制、工艺参数自动生成、三维刀具补偿、运动参数动态补偿等功能,而且人机界面极为友好,并具有故障诊断专家系统,使自诊断和故障监控功能更趋完善。伺服系统智能化的主轴交流驱动和智能化进给伺服装置,能自动识别负载并自动优化调整参数。直线电动机驱动系统已实用化。总之,新一代数控系统技术水平大大提高,促进了数控机床性能向高精度、高速度、高柔性化方向发展,使柔性自动化加工技术水平不断提高。

    要提高加工效率,首先必须提高切削和进给速度,同时,还要缩短加工时间;要确保加工质量,必须提高机床部件运动轨迹的精度,而可靠性则是上述目标的基本保证。为此,必须要有高性能的数控装置作保证。

    为了满足市场和科学技术发展的需要,为了达到现代制造技术对数控技术提出的更高要求,当前,世界数控技术及其装备发展趋势主要体现在以下几个方面。

    1)高速、高效

    机床向高速化方向发展,可充分发挥现代刀具材料的性能,不但可大幅度提高加工效率,降低加工成本,而且还可提高零件的表面加工质量和精度。超高速加工技术对制造业实现高效、优质、低成本生产有广泛的适用性。新一代数控机床(含加工中心)只有通过高速化来大幅度缩短切削工时才可能进一步提高生产率。超高速加工特别是超高速铣削与新一代高速数控机床特别是高速加工中心的开发应用紧密相关。

    2)高精度

    从精密加工发展到超精密加工(特高精度加工),是世界各工业强国致力发展的方向。其精度从微米级到亚微米级,乃至纳米级(<10 nm),应用范围日趋广泛。超精密加工主要包括超精密切削(车,铣)、超精密磨削、超精密研磨抛光以及超精密特种加工(三束加工及微细电火花加工,微细电解加工和各种复合加工等)。随着现代科学技术的发展,对超精密加工技术不断提出了新的要求。新材料及新零件的出现,更高精度要求的提出等都需要超精密加工工艺,大力发展新型超精密加工机床,完善现代超精密加工技术,以适应现代科技的发展。当前,机械加工高精度的要求如下:普通的加工精度提高了1倍,达到5μm;精密加工精度提高了2个数量级;超精密加工精度进入纳米级(0.001μm);主轴回转精度要求达到0.01~0.05μm;加工圆度为0.1μm;加工表面粗糙度Ra=0.003μm等。精密化是为了适应高新技术发展的需要,也是为了提高普通机电产品的性能,质量和可靠性,减少其装配时的工作量,从而提高装配效率的需要。随着高新技术的发展和对机电产品性能与质量要求的提高,机床用户对机床加工精度的要求也越来越高。为了满足用户的需要,近10多年来,普通级数控机床的加工精度已由±10μm提高到±5μm,精密级加工中心的加工精度则从±3~5μm提高到±1~1.5μm。

    3)高可靠性

    数控系统的可靠性要高于被控设备的可靠性1个数量级以上,但也不是可靠性越高越好,仍然是适度可靠,因为是商品,受性能价格比的约束。对于每天工作2班的无人工厂而言,如果要求在16 h内连续正常工作,无故障率P(t)≥99%的话,则数控机床的平均无故障运行时间MTBF就必须大于3 000h。MTBF大于3 000h,对于由不同数量的数控机床构成的无人化工厂差别巨大,我们只对1台数控机床而言,如主机与数控系统的失效率之比为10:1(数控系统的可靠比主机高1个数量级)。此时数控系统的MTBF就要大于33 333.3h,而其中的数控装置,主轴及驱动等的MTBF就必须大于10万h。当前国外数控装置的MTBF值已达6 000h以上,驱动装置达30 000 h以上。

    4)模块化、专门化与个性化

    机床结构模块化、数控功能专门化、机床性能价格比显著提高并加快优化。为了适应数控机床多品种,小批量的特点,机床结构模块化、数控功能专门化、机床性能价格比显著提高并加快优化、个性化是近几年来特别明显的发展趋势。

    5)智能化

    智能化的内容包括在数控系统中的各个方面:

    ——为追求加工效率和加工质量方面的智能化,如自适应控制,工艺参数自动生成;

    ——为提高驱动性能及使用连接方便方面的智能化,如前馈控制,电动机参数的自适应运算,自动识别负载自动选定模型,自整定等;

    ——简化编程,简化操作方面的智能化,如智能化的自动编程,智能化的人机界面等;

    ——智能诊断,智能监控方面的内容,方便系统的诊断及维修等。

    6)柔性化和集成化

    数控机床向柔性自动化系统发展的趋势是:从点(数控单机,加工中心和数控复合加工机床),线(FMC,FMS,FTL,FML)向面(工段车间独立制造岛,FA),体(CIMS,分布式网络集成制造系统)的方向发展,另一方面向注重应用性和经济性方向发展。柔性自动化技术是制造业适应动态市场需求及产品迅速更新的主要手段,是各国制造业发展的主流趋势,是先进制造领域的基础技术。其重点是以提高系统的可靠性、实用化为前提,以易于联网和集成为目标;注重加强单元技术的开拓和完善;CNC单机向高精度,高速度和高柔性方向发展;数控机床及其柔性制造系统能方便地与CAD/CAM/CAPP/MTS联结,向信息集成方向发展;网络系统向开放、集成和智能化方向发展。